8/10/24, 10:22 AM Open Source for you

- Computer software

Understanding
Cache Techniques

Cache is a crucial strategy for improving system performance as it temporarily stores
data for quick retrieval, preventing the need to read from the original data source
repeatedly, which can be time consuming. Several algorithms have been developed to
increase the cache hit ratio. Some of these are discussed here.

Register: Very small memory storage in computer processors
for fast retrieval by the processor; typically stores data that
the CPUs are processing
Cookies: Used in web browsers to maintain small data
holding user preferences or login details, and is quite
different from caching

We will see the various techniques used to save particular
data temporarily, as we cannot save the entire stuff. Caching
techniques can be used in different systems, such as:
= (Cache memory
= Cache servers
= CPU cache
= Disk cache
= Flash cache
= Persistent cache

Cache is considered effective when the client requests
data and it hits the cache rather than reading from the direct
memory — this is termed as cache hit, else it’s a cache
miss. Several algorithms are used to increase the cache hit
ratio based on application requirements. A few are briefly
described below.

Cache algorithms
Spatial
n general, caching is used by operating systems, CPUs, = This caching technique is used to perform advanced reads

GPUs, web browsers, applications, CDNs (content delivery
networks), DNS (domain name systems), databases, and
even at the ISP (internet service provider) level.

Before delving into a detailed discussion on cache, let’s
clarify some concepts often confused with it.

Caching vs buffering vs streaming vs

register vs cookies

Caching: Storing partial or small data for quick retrieval
Buffering: Using a buffer to store data when there is a
difference in the speed and processing of data between the
sender and receiver

Streaming: Real-time data broadcasting, whether audio,
video, or text

90 | JANUARY 2024 | OPEN SOURCE FORYOU | www.OpenSourceForU.com

https://www.pressreader.com/india/open-source-for-you/20240101/page/90

of the nearest data from the recently used data.

= The idea behind reading closely associated data is it
increases the chances of reading this data as well.

= This will increase the performance as the manual read is
avoided and the data is ready to be served.

= For example, data saved in an array or similar type
of records from a table can be read with a single read
instruction from the original source and saved in the
cache. This avoids multiple iterations of read requests.

FIFO (firstin first out)

= Data is added to the queue as it is accessed.

= Once the cache is full, the first added item is removed
from the cache.

7

Public User
Highlight

8/10/24, 10:23 AM

= The ejection occurs from the order of data being added.
= From the point of view of the terms of implementation and
performance this technique is fast but not smart.

LIFO (last in first out)

= This is the opposite of FIFO -- once the cache is full, the
last added item is removed first.

= The ejection occurs in the reverse of the order of data
being added.

= This technique, too, is fast but not smart.

LFU (least frequently used)

= Here the data keeps track of how frequently it has been
used from the cache, and the count is maintained.

= Once the cache is full, the lowest count data gets
removed first.

LRU (least recently used)

= Tnitially any read data is added to the cache, but when the
cache is full it frees up the least recently used data.

= Here, each time the data is read from the cache it’s moved
to the top of the queue, increasing its significance.

= This is a fast and most commonly used algorithm.

= “Temporal Locality’ uses a similar concept while saving
the recently used instructions in cache memory, as there
are high chances of these being used again.

LRU2 (least recently used twice)

= Two caches are maintained here — the item is added to
the main cache only when it is accessed a second time.

= Once the cache is full, the least recently accessed
item is removed.

= This is complex and more space is required, as there are
two caches and the count of accesses is maintained.

= The advantage is the main cache holds the most frequently
and recently accessed data.

2Q (two queue)

= Here, as well, two queues — one small and one large —
are maintained.

= First, accessed data is added to the smaller LRU queue.

= If the same data is accessed a second time, it is moved to
the larger LRU and removed from the first queue.

= Performs better than LRU2 and makes it adaptive.

MRU (most recently used)

= Quite opposite to LRU, here the most recently accessed
data is removed from the cache.

= This algorithm leans towards the older data, which is more
likely to be used again.

STBE (simple time based expiration)
= Here, once the data is added to the cache, its lifetime

https://www.pressreader.com/india/open-source-for-you/20240101/page/90

Open Source for you

tickers get started.
= Data is removed from the cache after a certain time
period, e.g., at 5.00 pm or a particular date or time.

ETBE (extended time based expiration)

= Data from the cache is removed after a certain
time period.

= Here the time to evict data is configurable; e.g., five
hours from now, or every ten minutes.

SLTBE (sliding time based expiration)

= The timeline of the data extends after being accessed
from the cache.

= In this algorithm, the most recently accessed data gets
more time to stay in the cache.

WS (working set)

= This is similar to LRU, but here a flag is created for each
access in the cache.

= Periodically, the cache is checked, considering the
recently accessed data in the working sets.

= Non-working set data is removed when the cache is full.

RR (random replacement)

= Here, data is picked randomly from the cache and
replaced with the newly accessed data.

= This approach does not keep track of the history, resulting
in less overhead, but the results are not guaranteed.

LLF (lowest latency first)

= This algorithm keeps track of download latency time.

= The data with the least downloaded latency time is
evicted first, as it can be quickly retrieved again.

= Here, the advantage is when complex data needs to be
retrieved, it can be easily referred from the cache.

LRD (least reference density)
= The object with the least reference density is removed
when the cache is full.
= A global reference counter is maintained, containing the
sum of all references in the cache.
= The reference density (RD) is calculated based on:
* Object’s reference counter (RC) meaning the number
of times it has been accessed
» Total number of all the references (GC)
» Each object has an arrival timestamp (AT), which
is the current GC value when it’s been added
to the cache
= The reference density (RD) is computed as the ratio
between the object’s reference counter (RC) and the
number of references added since the object was
included into the cache (GC — AT):
* RC(i)/ (GC - AT(i)).

www.OpenSourceForU.com | OPEN SOURCE FOR YOU | JANUARY 2024 | 91

7

8/10/24, 10:25 AM Open Source for you

= Computation of the reference density

Global counter GC: total number of all references
Arrival time AT: GC value when the page enters the buffer
Reference counter RC
: : RC(J
Reference densi RD(j)==RCC)
RC AT RD
AAA A B CDUDTETFF F F A
]] 1 1 |] 1] 1 1 1 1 I 3 1
T T T T 1 T 1 T 1] 1 1 =
1 2 3 10 11 12 13 Bl 1| 4
C| 1|5 B = 5
P ‘D| 2| 6
E| 1| 8
F 4(9
Figure 1: Computation of RD (Credits: http://wwwigis.informatik.uni-kl.de/cms/fileadmin/courses/SS2011/RDBS/lectures/Chapter 04.BufferManagement.pdf)
Clock giving it a second chance.
= Clock is an efficient version of FIFO, where data in the = During the eviction operation, the object follows the FIFO
cache does not have to be constantly pushed to the back queue, but to be evicted, the object needs to be 0. So, if in the
of the list but performs a general function as ‘Second queue the object was recently accessed it would have been
Chance’ in a circular queue. ‘1’, though after the eviction the flag is reset to 0 again.
= ‘Second Chance’ is a bit assigned to each object data in = Thus the data gets a second chance of not being replaced
the cache, and it is set to be 1 when it has been referenced, during its first consideration.
0
0 1
0 1
1

- approximate consideration of the most recent reference time

Figure 2: Reference time (Credits: http.//wwwigis.informatik.uni-kl.de/cms/fileadmin/courses/SS2011/RDBS/lectures/Chapter 04.BufferManagement.paf)

92 | JANUARY 2024 | OPEN SOURCE FOR YOU | www.OpenSourceForU.com

https://www.pressreader.com/india/open-source-for-you/20240101/page/93

7

8/10/24, 10:25 AM

GCLOCK (generalised clock)

= This is a mix between LFU (last frequently used) and
LRU (last recently used) replacement policies.

= The reference counts are used to track references to
cached objects.

= Each access request increments the reference count
of the object.

= TIf the cache is full, the object to be removed is
determined by decrementing the reference count for
each object.

= After decrement, an object is replaced by the object in
which reference count = 0 is found.

= This implementation tends to replace younger
objects first.

ARC (adaptive replacement cache)

= ARC dynamically balances recency and frequency
using a set of rules, and performs self-tuning.

= Tt keeps track of recently and frequently accessed
data queues, along with the entries of recently and
frequently removed data, also called ghost entries.

= These entries help the algorithm to expand or shrink
the LRU or LFU, based on the usage.

= ARC enables substantial performance gains over
commonly used modules.

= There is another variant of ARC — SARC or
sequential prefetching in adaptive replacement cache
— which is claimed to be better.

DeepBM

= This is a deep learning-based dynamic page
replacement policy (https://people.eecs.berkeley.
edu/~kubitron/courses/cs262a-F18/projects/reports/
project16_report.pdf).

= Using deep learning, this algorithm learns from the
past and dynamically adapts to the workload, which
predicts the page to be evicted from the cache.

Cache policies

Cache policies determine how the cache operates in terms
of writes to the storage.

= Write around cache

» Writes to the storage first and skips the cache.

* Here the advantage is when there is a large
amount of write, the cache will not need to be
overloaded with write I/0.

* But there are two common problems — data could
be stale in the cache, and reads could be slower as
the new data will not be present in the cache.

= Write through cache

* Write is performed in the system, cache, and

actual storage.

https://www.pressreader.com/india/open-source-for-you/20240101/page/93

Open Source for you

+ The advantage here is reads will be faster as the
most recently written data is available in the cache.

« But write will be slower as it needs to wait until the
write is successful in both the systems.

= Write back cache

+ Write operation takes place in the cache first, and
is considered to be completed if the data is written
to the cache.

* From here, the data is copied back to the storage.

* In this case, both the read and write could be faster.

+ But the greatest challenge is inconsistent writes,
as there is a possibility of not being written to
persistent storage.

Pros and cons of caching

Pros

= Performance improvement is expected if the right cache
algorithm is used.

= (Can act as middleware when the connectivity is
lost, allowing offline operations to sync once the
system is online.

Cons

= Performance can be impacted if the cache ratio is low.

= Invalid or outdated information could result in
misinformation, and there is a need to take special care
that data in cache is not stale.

New caching techniques and algorithms are being
continuously developed, but for now we have explored
a few that can help better system performance. In
conclusion, a quote to remember in the context of this
article: “There are only two hard things in computer
science: cache invalidation and naming things.”

— Phil Karlton EIEO

@ https://coderanch.com/wiki/660295/Caching-Strategies

@ https://developers.redhat.com/sites/default/files/
blog/2016/02/will-cohen-blog_graphics-02-300x300.png

@ https://www.youtube.com/atch?v=ccemOqDrc2I&list=LL&
index=1

® https://www.techtarget.com/searchstorage
/definition/cache

® https://hal.archives-ouvertes.fr/hal-01700364/documentin

@ By: Thangaselvi Arichandrapandian

The author works in a leading bank as AVP. She is a perennial
learner and loves the quote: “The more I learn, the more |
realise how much | don't know."-Albert Einstein

www.OpenSourceForU.com | OPEN SOURCE FOR YOU | JANUARY 2024 | 93

7

